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Several n-body calculations have simulated disk galaxies by means of a large number of 
self-gravitating particles moving on a plane, and have indicated many features in agree- 
ment with observation, but also some major disagreements. Some gaps remain in the 
arguments that results of these simulations represent physically valid consequences of a 
model in which a disk galaxy is composed entirely of stars. A new formulation of the 
n-body calculation was designed to complete the arguments. The entire calculation is 
done in polar coordinates, and runs as fast as equivalent programs in Cartesian 
coordinates. 

Possible difficulties with disk galaxy simulations are reviewed, and the gaps indicated. 
The polar program is described in detail, and results obtained with it are used to complete 
the arguments that the disagreement with observation represents a deficiency in the 
physical model. The physical process of formation of barlike or two-armed spiral 
structures from a variety of initial conditions is described; the mechanism is not an 
m = 2 instability in an initially axisymmetric configuration. 

1. INTRODUCTION 

The large gravitational n-body calculations in two dimensions that have produced 
long-lived spiral patterns [l-4] have made use of a Cartesian grid of points over 
which potentials or forces were computed, and have used a leapfrog difference 
scheme in Cartesian coordinates. Typical computations use 50,000 to 200,000 point 
particles that move on a plane under l/r2 forces of self-gravitation; the calculations 
are similar in spirit to several large plasma computations [5]. These gravitational 
systems usually form barlike density concentrations that shear into trailing spirals 
by differential rotation, and finally settle down into the spiral density waves that 
make the computer experiments look successful. But some difficulties remain. The 
velocity dispersions of particles are typically much greater than the corresponding 
velocity dispersions in real spiral galaxies. The disagreement is not small; velocity 
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dispersions in computed systems scale to be 2 to 5 times as large as the velocity 
dispersion of stars in our Galaxy, as observed in the solar neighborhood. 

These results have important implications if they properly reflect the physics of 
flat galaxies. Something must be present to stabilize the Galaxy-possibly some 
mass that is stable and that produces a gravitational potential within the observed 
stars move. Otherwise, the velocity dispersion in the Galaxy is too small for 
stability. This has ramifications far beyond the immediate question: If typical 
galaxies have much more mass than has been thought, the universe may be fairly 
close to the critical density for closure. 

There have been some gaps in the arguments that n-body simulations correctly 
indicate properties of galaxies composed entirely of stars. The polar program was 
designed to close those gaps, and runs with it have been successful in doing so. 
The completion of the arguments is a problem in computational physics; in this 
paper, results obtained with the polar program are combined with earlier results to 
establish the validity of the simulations. The goal is to produce a definitive state- 
ment that the simulations represent the physics of the model, which implies that 
any disagreement with observation represents a deficiency in the model. This is 
done by means of a critical examination of the arguments. 

We adopt the viewpoint that computation must be regarded as numerical 
experimentation. This viewpoint is essential with astronomical systems which do 
not admit laboratory experiments, but it is useful in other areas of physics as well. 
An experimenter in a laboratory must be certain that his results reflect the physics 
of the system under test, rather than some form of experimental error. Experimen- 
tal error might arise from defective experimental design, it might be an unavoidable 
systematic error, or it might be some combination of these effects. The computer 
program is analogous to the experimental apparatus. The usual program verifica- 
tion checks are equivalent to a laboratory experimenter’s equipment checks. There 
is a peculiar tendency to accept computed results uncritically; the computational 
physicist must be even more careful than a laboratory experimenter to satisfy 
himself that computational results reflect the physics of the problem under investi- 
gation. 

An additional danger is that important physical effects may have been omitted 
in the original design. In this respect, computational physics is closer in spirit to 
theory, which is usually based on abstractions designed to leave out “unimportant” 
details in order to produce a manageable system. But the abstraction may be so 
severe that there is little resemblance between the physical system and the model. 
The computational physicist can include more effects than can a theoretician, so 
he can get closer to the true physics; but he still deals with oversimplified systems. 
Effects can be switched on and off in computer experiments to help find the impor- 
tant physical mechanisms at work in any perticular situation. Computer experi- 
ments are most convincing when they can be used to identify those physical 
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processes which are most important in producing the effects observed in nature. 
Features of galaxy simulations that possibly could lead to fallacious results or 

interpretations are surveyed in Section 2. While some of these possibilities have 
been eliminated by earlier experiments, checks with the polar-coordinate program 
have eliminated those that remain. 

The polar program is described in Section 3. The potential calculation, in 
particular, is useful for other astronomical calculations; it has already been used 
for self-consistent calculations of self-gravitating hydrodynamic flows on a plane. 
Finally, in Section 4, we describe results obtained with this program, and use these 
results to complete the argument that the simulations are physically valid. 

The polar program proved to be more powerful as a tool in the study of galactic 
dynamics than had been hoped at the time it was designed. It provides a fine degree 
of control over the experiments. It has been possible for the first time to construct 
nontrivial static self-consistent initial conditions that represent true equilibria [6]. 
Most of these are unstable. These static self-consistent starting conditions are 
similar in spirit to the “quiet start” of plasma computations [7], but are substan- 
tially more difficult to construct. 

Further, the polar program has been useful as an aid in the identification of the 
physical processes responsible for certain observed phenomena, such as the over- 
whelming preponderance of two-armed systems among spiral galaxies. More 
detailed expositions of the astronomical results will be published elsewhere. 

2. POSSIBLE DIFFICULTIES 

The polar calculation, like its predecessors, is an initial value calculation that 
undertakes the integration of the Newtonian equations of motion for a large 
number of particles constrained to move on a plane under l/r2 forces. A galaxy is 
pictured as a large number of such mass-points, in dynamical equilibrium under 
their forces of self-gravitation. Large numbers of particles can be handled because 
forces are computed only at a restricted set of points-if needed, forces are obtained 
for intermediate locations by interpolation rules. Forces are not computed between 
particle pairs, which makes the amount of computation necessary to obtain the 
forces independent of the number of particles. The main computational difficulty 
in conventional gravitational n-body problems comes from the need to handle 
close encounters; the possible formation of binary systems. In these calculations, 
the forces are cut off for close encounters, sidestepping that problem. The range 
of the cutoff is on the order of the spacing between the grid points at which force- 
values are tabulated. The justification for this cutoff lies in the observation that 
stellar dynamical calculations can be corrected for divergences at close encounters, 
while the computations are designed to explore long-range effects-a matter that 



DISK GALAXIES 403 

has been left unresolved by theory. The computer models approximate particle 
dynamics; they may also include additional features such as crude hydrodynamics 
of some gas or effects of magnetic fields, but these will not be discussed in this paper. 
In keeping with the crudeness of the force (or potential) calculation, the equations 
of motion are handled by a time-centered leapfrog scheme. Computational details 
may be found in [8] and [3, 9, lo]. 

The most obvious points that might compromise the validity of numerical 
experiments with a system of mass-points can be listed as follows. These points 
range from purely technical matters that arise in the specific form of the computa- 
tions (analogous to experimental technique), through practical matters of whether 
certain phenomena should be detectable in the experiments, to theoretical results. 
that have been invoked in the interpretation of the experiments. 

1. Crude low-order integration scheme (time-centered leapfrog). 
2. Roundoff. This is typically more severe than with most computations, 

either to permit packing several particle attributes into a single machine word, or 
to assure a Liouville theorem and reversibility [l, 81. In the velocities, roundoff 
should look like an additional velocity dispersion, and should help to stabilize 
systems; however, in the forces, roundoff is expected to have a destabilizing effect 
El. 

3. Effective change of the force law because of the near cutoff and from the 
tabulation of potential values on a grid. 

4. Calculation in Cartesian coordinates may “pump” m = 2 or m = 4 
angular Fourier components (densities with 2~ or 4~ angular dependence; those 
with m = 2 are barlike). In addition, the corners of a square field can fill with 
particles and further excite density features with m = 4 symmetries. Calculation 
in Cartesian coordinates could be responsible for the predominance of barlike 
(m = 2) features. 

5. Restriction of the particles to a plane places an artificial constraint that 
could result in larger velocity dispersions. 

6. There might not be enough particles to allow reasonable relaxation times,. 
which should be long compared to the time modeled in an integration. 

7. Possible failure to have constructed a static self-consistent model, such 
that changes in the system are a normal response to whatever initial condition was 
provided. 

8. Posssible failure to recognize an instability (or stability, if we had it). 
9. It has been customary to invoke the Toomre stability criterion [I I] in 

discussions of the numerical experiments. This criterion refers to axisymmetric 
disturbances in axisymmetric systems. A stability threshold should be present if 
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this criterion is applicable; however, the experiments fail to show any stability 
threshold. This is the reason for the concerns expressed in points 7 and 8. But, in 
addition, attempts to determine the stability of systems not constrained to remain 
axisymmetric by the application of Toomre’s criterion may be inappropriate. This 
affects the interpretation, rather than being a matter of experimental technique. 

Several of these have previously been eliminated as possible sources of trouble. 
Unfortunately, these points cannot be discussed in order because of the nature of 
the evidence used; a given experiment often provides results that can be applied to 
several points. 

Points 1 and 2 arise in any computations of initial-value problems. While they 
were disposed of in an earlier paper [S], there is now additional empirical evidence 
in support of this conclusion. 

Point 2, concerning roundoff, has been eliminated by comparison of runs with 
different amounts of rounding. The calculations of Hohl and Hackney [3,4] used 
much finer roundoff than those of Miller and Prendergast [l, 21, but behaved 
similarly with regard to the problem of large velocity dispersions and with respect 
to the formation of barlike or m = 2 features. 

Point 3, modification to the effective force law, has been eliminated as a possible 
source of trouble by Hohl [12], who showed that the tendency to large velocity 
dispersions cannot result from the force cutoff for near encounters. If anything, 
calculations with such “softened” forces underestimate the true effect. Gravitational 
systems behave differently from plasma simulations in this respect. Langdon [13] 
demonstrated an instability in plasma simulations if the Debye length is too small 
(on the order of the grid spacing). But the analog of a Debye length with gravita- 
tional systems is the system dimension. Hohl’s result [12] also provides experimen- 
tal confirmation of the conclusion that galaxy simulations are safe with respect to 
the Langdon condition. 

Point 6, concerning relaxation time, has been eliminated by Hohl by means of a 
study of the rate at which energy was transferred among particles of different 
masses in a computed system [14]: the experimental relaxation time is more than 
500 rotation periods. This is much longer than most integrations, which seldom 
run more than 20 rotation periods. 

A numerical “heating” process, in which particle kinetic energies increase 
systematically involves an interplay of points 1,2,3, and 6. In plasma, the “heating” 
rate is measured in terms of the “collision time” [15]. In the gravitational problem, 
the relaxation time provides the measure; numerical “heating” should be negligible. 
In fact, “heating” has not been detectable in gravitational experiments; Hohl’s 
measurements on the “stable axisymmetrical” models [4] show no perceptible 
heating, and Hohl had to use a mixture of particle masses to produce a measurable 
relaxation effect [ 141. 
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The Toomre criterion (point 9) results from a theoretical discussion of axisym- 
metric responses of an axisymmetric disk galaxy to axisymmetric disturbances [l I]. 
Toomre showed that an axisymmetric disk with no velocity dispersion would be 
unstable to axisymmetric disturbances, but that such a disk could be stable if it had 
sufficient velocity dispersion. The required velocity dispersion is different in different 
places within a disk galaxy; we refer to a system in which the velocity dispersion is 
sufficient everywhere as satisfying the Toomre criterion. Point 9 was eliminated as 
a possible source of trouble by an experiment with concentric rings as pseudo- 
particles [16], which forced all distrubances and responses to be axisymmetric. A 
stability threshold was found and the Toomre criterion was quantitatively satisfied, 
leading to the conclusion that computed systems indeed obey the Toomre criterion 
if they are forced to remain axisymmetric, and that the failure of disk galaxies to 
show any stability threshold, much less one near that of Toomre’s criterion, must 
be ascribed to the admissibility of nonaxisymmetric disturbances and responses, 
Hohl, in another series of experiments, showed that axisymmetric systems could be 
maintained in the computer with velocity dispersions only slightly larger than those 
required by the Toomre criterion when the force field is kept axisymmetric [4], in 
contrast to the situation when nonaxisymmetric forces are permitted. Hohl’s 
result is consistent with the conclusion stated about the Toomre criterion. An 
interesting feature of the Toomre criterion is that the velocity dispersion for stars 
in the solar neighborhood or our Galaxy is near that required by the Toomre 
criterion; this coincidence is responsible for the importance attached to the criterion 
under circumstances in which the criterion is evidently not applicable. 

Since the experiments concerning the Toomre criterion were run with the time- 
centered leapfrog difference-scheme, that possible source of difficulty is eliminated 
as well (point 1). Similarly, since the experiments with rings to check the Toomre 
criterion showed a sharp stability threshold, the question concerning our 
ability to recognize stability, if present, in a computed model is also eliminated 
(point 8). 

The numerical experiments are on safe grounds with respect to point 5, restriction 
to a plane. Real spiral galaxies are quite thin; the thickness is typically about l/20 
of the radius. Thus, while real galaxies have nonzero thickness, approximation by 
point particles that move on a plane is reasonable. Theoretical estimates, based on 
attempts to extend the Toomre criterion to disk galaxies with nonzero 
thickness [17], indicate that such systems should be stable with the dispersion in 
one component of the velocity 20-30x lower. With this reduction, the kinetic 
energy of the practicles over a unit area is about the same for planar systems and 
in three dimensions. Hockey and Brownrigg [18] reported a three-dimensional 
calculation of a thin disk. They found that three-dimensional systems can exist in 
the computer with somewhat lower velocity dispersions than can the corresponding 
plane system. But the pictures presented by Hackney and Brownrigg show rather 
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small differences, such as might accompany velocity dispersions lower by 20-30 % 
(for one component), but not the large differences expected for a reduction of 
velocity dispersions by the required factor of 2 to 5. The experimental results 
confirm the theoretical expectations. 

Point 7, possible failure to have generated a static self-consistent model, is 
largely a matter of experimental technique related to the initial conditions from 
which the numerical experiments are started. Starting conditions that are intended 
to mimic simple theoretical galaxy models are seldom correct in all details. Calcula- 
tions immediately respond to the nonequilibrium state, and begin a general 
rearrangement. It is possible that the large velocity dispersions result from this 
rearrangement, and that systems could exist in the computer with lower velocity 
dispersions. The statement that experimental systems have large velocity dis- 
persions means that no one has yet found a system that would remain substantially 
unchanged in the computer with small velocity dispersion. This is by no means a 
proof that no such systems exist, or equivalently, that any equilibrium model with 
small velocity dispersions is unstable. But enough systems have been tried to make 
such a conclusion plausible. 

Disk galaxies are kept from collapsing under their forces of self-gravitation by a 
mixture of centrifugal and pressure (velocity dispersion) forces. It has not been 
possible to work out the proper correction to the rotational velocities in models 
with sufficient velocity dispersion to meet the Toomre criterion. The correction to 
the mean rotational velocity is calculated according to the equations of stellar 
hydrodynamics [19], which make use of the first and second moments of the local 
stellar velocity distribution. Apparently these moments do not provide an adequate 
description with such a large velocity dispersion. Models with initial conditions 
generated by these rules are not close enough to equilibrium. 

Self-consistent starting conditions obtained by using a late stage of some other 
calculation, once that other calculation has settled down, invariably have large 
velocity dispersions. Starting conditions obtained through modifications of these 
late-stage models fail to be equilibrium models once the mechanism that generates 
the modification is turned off. The modification usually consists of a reduction of 
the velocity dispersion, possibly with readjustment of the mean rotational velocity, 
and has been referred to as “cooling.” 

The most satisfactory solution has been to use complete self-consistent 
equilibrium theoretical models, which properly take all of the features of mean 
rotational velocity and pressure support into account. A stability analysis is essen- 
tial as well. So far, only the models of Kalnajs [20] meet these conditions. Computer 
models based on the Kalnajs models behave significantly better than the models 
used previously [lo]. Even so, linear combinations of the Kalnajs “omega models” 
must be used to achieve a model that appears to be stable under a linear stability 
analysis [20]. These more elaborate models are fairly difficult to mimic in the 
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computer. The disk galaxy experiments reported in this paper all start from a pure 
Kalnajs omega model. 

Note the distinction between point 7, possible failure to have generated a static 
self-consistent (equilibrium) model for use as a starting condition, and point 8, 
which relates to stability. Equilibrium is required before it makes sense to inquire 
into stability, but an equilibrium may be either stable or unstable. From an 
operational point of view, it can be very difficult to distinguish between instability 
and failure to have achieved equilibrium. The work reported in this paper has 
helped to clarify this situation. Examples of both stable and unstable equilibria 
have been obtained with the polar program. Some equilibrium models have been 
produced which are stable or unstable according to the value of a parameter. These 
were not disk galaxy models. A rather sharp stability threshold appeared as the 
parameter was varied. In this case, instability is easy to distinguish from lack of 
equilibrium. 

Disk galaxy models are surprisingly intolerant of any failure to meet the self- 
consistency conditions. It makes no difference whether the intolerance results 
from instability or from lack of equilibrium; the result is the same whatever the 
cause. 

Point 7 clearly requires separate discussion for each experiment. Before the 
present set of experiments was undertaken, the strongest results that bear on point 7 
were those of Hohl [lo] with the Kalnajs models [20]. Hohl’s results suggested 
that unchanging self-consistent models could be constructed, but that the models 
have large velocity dispersions. The present work provides some stronger results. 
The issues raised by point 7 are understood and are under control; they have been 
eliminated as a possible cause of the large velocity dispersions and of the preference 
for barlike structures. This point will be discussed further in Section 4. 

All points except number 4, the effect of a Cartesian grid, have been eliminated. 
While it is unlikely that integration on a Cartesian grid could be responsible for the 
distressingly large velocity dispersions in the experimental galaxies, it could 
account for the preference for barlike structures. The polar program was 
undertaken to study the effect of point 4. A clear-cut experimental answer is 
provided by running the calculation with a different coordinate system. Experi- 
ments run with the polar program have yielded results with which point 4 can be 
eliminated, and which strengthen the arguments on many of the remaining points 
as well. 

With the help of results obtained with the polar program, we conclude that all 
the obvious points by which numerical experiments might lead to results that do 
not reflect conditions set by the physical model have been systemetically eliminated, 
as carefully as it is possible to do so. These points relate both to experimental 
technique and to interpretation. The physical model pictures a galaxy as an isolated 
assembly of point particles that interact under inverse-square forces of self- 
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gravitation. To the extent that the numerical results might disagree with observa- 
tion, the deficiency rests with the physical model, and not with computations 
designed to study the implications of that model. 

3. DETAILS OF THE POLAR PROGRAM 

A. The Grid 

There are advantages to a grid obtainable from a Cartesian grid by conformal 
transformation. The integration is carried out in the variables that describe the 
Cartesian coordinates, (u, v), with the mapping r = Lem”, v = cxv for some con- 
venient value, 01, which determines the number of azimuthal grid points along a 
ring at u = constant. Arbitrarily, cy = 2~/36 has been chosen, leading to IV, = 36 
azimuthal values. A choice, M = 24, makes the radius run from L (at u = 0) to 
about 65L at u = 24. The radial interval ranges from 0.191L at u = 0 to 12.6L at 
u = 24. (L is a dimensioned length that sets the length scale for the problem.) The 
potentials are required over a 24 x 36 grid of points. 

With the choice, a = 3L, for the “softening parameter” in the potential (defined 
at Eq. (8), below), the polar calculation can describe as much detail as a 128 x 128 
grid in Cartesian coordinates. Several advantages to the polar reprosentation are 
apparent. First, central regions, where a lot of detail is desirable, are described by 
a fine grid, while the outer regions, which are typically more sparsely populated 
and do not show as fine a structure, are described by an appreciably coarser grid. 
So this 24 x 36 grid describes a disk galaxy as well as the old 128 x 128 or 256 x 
256 Cartesian grids. This produces a substantial speedup of the force-calculation, 
a second advantage. A third advantage is that it is easy to restrict the force field to 
a subset of angular harmonics-for example, only 0 and 2, etc. This facilitates 
experiments to determine sensitivity of the systems to various angular driving terms. 
The polar description is more naturally suited to the problem. 

An inner curoff at u = 0 (u = L) is small enough that few particles spill off the 
inner edge. Those that do spill at this boundary are carried across the center by 
force-free rectilinear motion. Particles that spill over the outer boundary (u = 24) 
have simply been removed from the calculation, but they could be treated by other 
rules. 

The nonuniform grid cannot be used directly in an integer arithmetic mode 
equivalent to that used with the Cartesian program [8]. Unit velocity in the outer 
regions corresponds to a very large velocity in the inner regions. Either a floating- 
point or a Cnely divided integer representation should be used. As a matter of taste, 
we prefer an integer representation that corresponds to about 2-s of the potential 
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grid. Unequal amounts of subdivision could be used at different radii, but the 
resulting program complexity more than outweighs any advantages. 

Potentials can be interpolated in (u, u) by the usual rules for interpolation with a 
Cartesian grid of points, with u interpreted module 36. There is little advantage to 
storing force components over potentials; linear interpolation on forces requires 
fetching 8 force-values, while the equivalent quadratic interpolation in potentials 
can be based on 6 or 9 (we prefer the 9-point interpolation rule). Potentials are 
stored over the grid. 

B. The Difference-Scheme 

The Hamiltonian for the system is 

s = $& (P” + 3) + ?qu, u), (1) 

where iP and J are the momenta conjugate to u and u, respectively, and p is the 
mass of a particle. 

A simple translation to a time-centered leapfrog scheme yields 

Jh+(1/2)) = J(n-(l/2)) + G(n), (2) 

ph+1/2, = pb-l/2) + exp(-tau'"') (p;'" + J;'*) + F(n), (3) 

where dimensioned units (@“/At) have been divided out throughout, so P = 
P(At/pL2), J = d(At/pL2), F = (-i3V/&)(At2/,uL2), and G = (-iW/av)(At2/pL2) 
are dimensionless. The values, Pa (VI) = $(p(n+(1/2)) + p(n-(l/2))), and JF) = 

&(Jfn+lj2) + J(n-(1/2))), are time-centered for the difference scheme. The equation 
for P(n+(112)) is implicit. Similarly, the equations for zi, d become 

u(“+l) = u(n) + exP(-2~2~(“+l~zi) ptn+1,2j, 

@+l) = y(n) + exp(-20ru(n+1~2)) J(n+l,2, 
a2 

The time-centered value for u (1L+(1/2)) inside the exponential is treated like the 
Pr) and Jc) terms; that equation, too, is implicit. The relations for P(IL+(l12)) and 
zJ”+l) are unpleasant, but not troublesome. The resulting scheme has remainder 
terms O(AP), like the Cartesian leapfrog scheme. 

The Hamiltonian formulation, with storage of momenta and coordinates, 
assures a Liouville theorem. The time-step is determined through selection of the 
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scaling coefficient in the potential calculation. Transition from the dimensionless 
units of the calculation to the dimensioned units of the modeled physical system is 
through CL, L, and dt, the mass of an individual particle, the length scale chosen, 
and the integration time-step. 

Particle attributes are packed into one 60-bit word on a CDC 7600, which 
allows 14 bits each for P and J and 15 each for u and U. The remaining bits are used 
for flags. Momenta are scaled so the largest magnitude representable is four times 
the angular momentum of a particle on the periphery of the initial disk. No 
momentum components have ever gone out of the allowable range. 

Particle-pushing requires about 3 set per integration step for 60 000 particles. 
This is about 1.6 times the time required for integration in Cartesian coordinates, a 
pleasant surprise since we had expected that a polar program might require signifi- 
cantly more time. The particle-pushing programs were written without any 
particular attention to producing fast-running-object codes. Since the polar 
programs have turned out to be so useful, some attention to careful programming 
to improve running speed in this part of the program would be appropriate. 

An alternative reversible difference-scheme for (u, v) coordinates has been 
proposed by Buneman [21], in which the (Pr’)2 term in Eq. (3) is represented by 
the geometric mean of P(“+1/2) and P(n-1/2). This permits a simpler (and faster) 
solution for P(n+112). Tests were run with Buneman’s difference-scheme; the entire 
integration ran about 10% faster. The small difference results from the usual 
feature that such a large part of the total computation time is spent in computa- 
tional overhead; packing and unpacking particle data, fetching and interpolating 
potentials, bounds-checking, and so on, that a speed-up in the integration algorithm 
yields little overall reduction in running-time. 

Like the present scheme, the leading error term in Buneman’s difference-scheme 
is O(dt3), typical of these reversible first-order schemes. However, the coefficient 
of (dt3) is Q for Buneman’s method against +& for the method used. The difference 
results from the change to updated forces halfway through the momentum step in 
the present method, while Buneman’s method uses the same force-value for the 
entire step. The shorter time-step required to compensate for the larger truncation 
error more than outweighs the speed-up gained by the faster method. This is the 
usual argument in favor of more elaborate integration methods. We continued to 

1 use the method set forth in Eqs. (2) to (5) rather than changing to Buneman’s 
method. 

C. The Potential Calculation 

The potential calculation proceeds through Fourier transformation of the density 
in the angular coordinate: (z(u, U) ---f 6,(u), where n is the index of the angular 
Fourier component. The potential energy of interaction between two such Fourier 
components is zero unless the indices match, but the calculation does not seem to 
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admit further useful decomposition. There is a matrix b,(r, , rj) for each azimuthal 
index, n, such that 

and such that the azimuthal Fourier transform of the set of potentials at the grid 
points on the ring at ri is a linear combination of the transformed mass densities on 
all rings. With the “softened” potential, the self-potential of a ring is finite, so 
there is no need for special treatment for ri in the sum. 

The potential energy of interaction between two mass-rings with unit masses in 
Fourier components m and n is 

where 
z = (rj2 + rj2 + a’) - [(riZ + rj2 + U2)2 - 4ri2rt]1/2 

2r$j (8) 

Here, a is the “softening parameter” in the potential: the potential energy of 
interaction between two point particles separated by (dx, dy) is -GpIp2(dx2 + 
dy2 + a2)-lj2. The function, F, is the hypergeometric function. The n = 0 case 
reduces to the complete elliptic integral (2/n) K(z); as n gets large, the function 
approaches (1 - z2)-l12, while intermediate values of IZ lead to a monotone in- 
creasing sequence at fixed z. The argument, z, is positive and z < min(ri/rj , rj/ri) 
with equality for a = 0. 

Proper expression of the interaction potential, in the nearest gridpoint (NGP) 
approximation, requires Fourier components to all orders, since the transformed 
density is periodic with period N, (for N, points equally spaced around the circle) 
in the index, IZ. The hypergeometric function is not well suited to numerical compu- 
tation because of slow convergence, especially for z near unity. 

A practical computation that properly sums these functions to all orders and 
that incorporates the appropriate boundary condition that the potentials go to 
zero at infinite distance is straightforward to construct. The potential energy of 
interaction between two particles of equal mass at (rl , vl) and (r2 , yz) is 

D(r, , y1 ; r2 , q72) = [r12 + r22 + a2 - 2rl r2 cm (v2 - q4-1’2, (9) 

where Gp2 = 1. The set of matrices Bn(r r ) ’ . 1 , 2 IS the drscrete Fourier transform 
(technically the complex conjugate of the DFT, but the DPT is real) of the set of 
these D’s for all N, values of (y2 - I& with rl and r2 fixed. 

In the calculation, the potential is tabulated on 26 values of the radial variable 
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and 39 values of the angular variable. The extra values facilitate interpolation near 
the boundaries of the allowed region. Because of the symmetries in the potentials, 
it is sufficient to tabulate [(N,/2) + l] matrices Bn(rl , r,)(for IV, even). For the 
24 x 36 calculation, there are 19 matrices of dimension (26 x 24). The potential 
calculation consists of the following numbers of operations: (1) twenty-four 
Fourier transformations of the density. Each transform is of length 36, for a total 
of 8640 operations. (2) Thirty-six multiplications of 24-element vectors by 26 x 24 
matrices, which yields 22 464 operations. (3) Twenty-six Fourier transforms to 
yield the potential values at each of the (26 x 36) points. Each transformation is 
of length 36, for 9360 operations. The total of 40 464 operations may be compared 
to 1 048 576 operations for an equivalent 128 x 128 grid in Cartesian coordinates. 
Storage of the D, requires 11 856 locations, compared to the 65 536 for convolution 
coefficients in the Cartesian calculation. An additional symmetry, Bn(r,, r,) = 
Bn(r, , r,), which could be used to reduce the storage requirement to 6631 loca- 
tions, has not been utilized. There is a substantial computational advantage to the 
potential calculation in polar coordinates. 

There is no feature analogous to the problem of periodic replication in the 
radial direction with this formulation; hence there is no need to surround the 
active region with a fictitious empty region. The angular coordinate is periodic; 
the DFT fits naturally. A substantial fraction of the computational saving results 
because empty neighboring regions need not be included. 

The potential calculation can be restricted to a subset of angular harmonics by 
omitting the calculation of the corresponding @% . The subroutine that carries out 
the potential calculation has been arranged to permit the Fourier amplitudes to be 
printed for both the density, 1 6,(rJl , and the potential, I ‘f&-J\ . 

The potential calculation is much faster than had been hoped at the time a polar 
program was planned. The factor 25 had not been anticipated, and only became 
evident as the details were worked out. The speed advantage results from two 
features: (1) an adequate description of the potential field requires many fewer 
points, and (2) it is not necessary to include “empty” regions to avoid troubles 
from the periodicity of the DFT, as it is with Cartesian coordinates [8,9]. The 
potential calculation, written without attention to details that would help with 
running speed, and compiled without concern for the quality of the object code, 
runs in less than 0.1 set on a CDC 7600. Three-dimensional calculations based on 
cylindrical coordinate systems should achieve similar speed advantages. 

Several alternative formulations are available for potential calculations in polar 
coordinates [22]. These fall into two classes: Bessel-function transformations 
(Toomre and Clutton-Brock) and eigenfunctions of the Laplacian in oblate 
spherioidal coordinates (Barbanis and Prendergast). The Bessel function formula- 
tions present some difficulty if restricted to a finite set of grid points or of 
“frequencies,” or if the mass is restricted to a finite region: all of these are necessary 
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for practical computation. The spheroidal formulation automatically restricts 
itself to the interior of a circle on the plane and uses discrete “frequencies” (order 
and degree of associated Legendre polynomials). However, termination of the 
expansions at a finite number of terms produces effects analogous to band-limiting 
in Fourier expansions, which can cause incorrect values to be returned for the 
potentials. The present formulation was preferred, with its admitted shortcomings, 
because it returns correct values for the potentials in a uniform and precisely 
defined way over the configuration. 

D. Starting Conditions 

Experiments have been started from two different basic initial conditions. 
Each has the property that the model obtained by setting the velocity dispersion 
to zero is an equilibrium model that remains unchanged after an integration step. 

The first condition generates the set of Kalnajs [20] “omega models” also 
studied by Hohl [lo]. These models contain a (dimensionless) parameter, 
0 < 9 < 1 such that models with 52 = 1 have no random motions (no velocity 
dispersion; all particles move on exactly circular orbits), while 1;2 = 0 produces 
models with no mean rotation. Kalnajs [20] showed that these models are all 
unstable under a linear stability analysis. However, models with Q < 0.811 are 
stable against axisymmetric disturbances; this is the analog of Toomre stability for 
these models. 

Particles are loaded into the configuration space on a sequence of concentric 
rings spaced to produce the desired radial density variation. Thirty-six particles 
are equally spaced around each ring. The number of rings is chosen to make the 
total number of particles loaded come out near 60 000 (1665 rings for 59 940 
particles). Next, the force field is determined by the potential calculation and the 
angular momentum of the particles on each ring set such that the centrifugal 
acceleration just balances the radial force, to produce a purely circular motion 
(J = J,J. This step is essential because the small difference between the actual 
force field and the analytic force field is too great for a model to remain in equili- 
brium if the circular motion is calculated from the analytic form. The differences 
arise principally from the softened forces and from the unequal numbers of rings 
in each radial interval. With the angular momenta set according to the force field 
and the radial momenta set to zero, a “cold” disk, or Q = 1 model, is complete. 

Models with J2 # 1 have mean angular momentum J,, = QJ, and mean radial 
momentum, P,, = 0; “peculiar momenta” are chosen for each particle by sampling 
from the desired distribution in a Monte Carlo sense, and then are added to the 
mean momenta. This procedure assures that models generated with 9 = 1 reduce 
to the appropriate “cold” disk. The “peculiar” velocities in these models are quite 
large. At the center, the maximum peculiar velocity is (1 - Q2)l12 times the circular 
velocity of a particle on the periphery. 
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The quiet disks with L’ = 1 have no apparent change. With 36 particles in each 
ring, each time one particle moves out of a cell of the grid used for the potential 
calculation, another particle moves into that cell. The potentials remain constant 
throughout the motion. While the pure Kalnajs model with IX = 1 represents a 
rigidly rotating disk, the disk actually obtained has differential rotations; the 
angular velocity is slightly different at different radii. Even so, the disk with Sz = 1 
is an equilibrium model. 

A ring of particles in orbit about a fixed central mass is the second starting 
condition. For this case, all particles have the same radius (the ring is infinitesimally 
thin), and there are 6 particles placed on each of 36 x 256 equally spaced locations 
in angle around the ring, for a total of 55 296 particles. The mass at the center is Q 
times the total mass in the ring (55 296 Q times the mass of an individual particle 
in the ring). Again, by means of the potential calculation, the angular momentum 
of each particle is set to the circular value, J, , so the ring is in equilibrium with 
each particle on (the same) circular orbit centered on the central mass. The quiet 
ring configuration (P = 0) forms another equilibrium model that circulates in the 
computer without change. 

More interesting models, with a nonzero velocity dispersion, are generated by 
giving each particle a radial momentum, P = qJ,U, where U is pseudorandom in 
(- 1, 1). Models with q = 0 reduce to quiet equilibrium models. Particles with 
different amplitudes of oscillation about the equilibrium orbit oscillate at different 
frequencies, so once started, the configuration never again collapses to a thin ring. 
This model was designed for studies of the stability of ring galaxies, but it also has 
evident application to the problem of Saturn’s rings. 

The integration time step is determined by setting a coefficient in the potential 
calculation. This coefficient has been determined by an approximate relation to 
make the rotational period in the initial configuration to be a specified number of 
integration steps, usually 64, 128, or 256. Most experiments have been run with 
128 integration steps per rotation of the initial configuration. Because these experi- 
ments were designed to study properties of the integration and responses to different 
initial conditions, most runs were rather short; none was carried beyond 4 rota- 
tions of the initial configuration. 

The Kalnajs “omega models” are disks whose density goes to zero beyond a 
certain limiting radius. Disks have been loaded with maximum values of u at 
22 (r/L = 46.5) and 19 (r/L = 27.6); these are about 0.42 and 0.7 of the outermost 
radius allowed in the configuration. Rings were loaded at u = 19. 

E. Cartesian Potentials 

An experimental study of spurious effects produced in Cartesian coordinates 
(point 4 of Section 2) is facilitated by providing a way of mimicking a Cartesian 
calculation in the polar program. Simulations can be run from identical starting 
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conditions, with and without the Cartesian perturbation. Comparisons can then be 
made in which the only difference is that due to the perturbation. Clearly this 
simulation is approximate. The most important features are identified and the 
others ignored. 

Especially in the calculations of Hohl [3, IO], particle positions and velocities 
are represented on sufficiently fine divisions that there are effectively no restrictions 
to the directions in space that can be represented. Our Cartesian calculations [8] 
made use of coarser number representations, but since similar effects are obtained 
with both calculations, we conclude that Cartesian representation of particle 
positions and velocities cannot contribute any significant effects. 

Particles in the corners of a square field present no problem. Hohl eliminates 
their effect by using only particles interior to a circle inscribed inside the square 
for the potential calculation. 

The process of computing potentials over a Cartesian grid can have an important 
effect. Particle positions are represented on a fairly coarse grid as input to the 
potential calculation, and the potential values are represented on the same grid. 
Because the potential values returned are correct for a mass distribution that is a set 
of point masses at each of the grid-points, the only effect that can arise from the 
tabulation of potentials on the grid is a short-wavelength effect like that in the 
Langdon computational instability [13], which has been argued to be unimportant 
in gravitational problems. The dominant effect with a Cartesian grid is the angular 
perturbation from assigning particles to the square grid, which is straightforward 
to simulate. 

The principal effect of the Cartesian grid is felt very near the beginning of the 
calculation, when the exact potential field is axisymmetric but the Cartesian 
representation introduces small fictitious potentials in the fourth, eighth, etc., 
Fourier components. If the effect is important, the system responds with even 
greater amplitudes in those components. In the experiments, the growth can be 
masked by “noise” that results from the normal development of the system from 
an initial condition that contains some randomness in the velocities. 

The perturbations arise from assigning particles to locations on a Cartesian 
grid in the initial condition of the Kalnajs disk. The grid has spacing L. The non- 
axisymmetric part of the potential computed from this cartesian particle assignment 
was inserted as an external potential that remained fixed throughout the calculation. 
The external potential is added to the potential produced by the particles to yield 
the total potential. The potential produced by the particles is computed anew at 
each integration step, while a fixed external potential is reused at each step. The 
fixed Cartesian potential can be made stronger or weaker to vary the strength of the 
perturbation. At unit strength, it represents a 128 x 128 active Cartesian grid; at 
four times normal strength, it approximates a 64 x 64 active grid. 

“Cartesian” potentials are nonzero only in the fourth, eighth, etc., angular 
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Fourier components. Those of order 8, 12, and 16 are nearly as strong as that of 
order 4, but they are more restricted in their radial range. At unit strength, the 
fourth angular component attains an amplitude nearly l/l000 of the axisymmetric 
potential component over the range from u = 12 to 22 (r/L = 8 to 47). 

F. Program Verification 

A major part of design and programming effort goes into verification of the 
programs. Modular structure facilitates checking. This, in turn, involves design of 
the programs around a basic data structure, which can be very simple in a calcula- 
tion such as this. 

The potential calculation was checked by comparison with values obtained by 
straightforward “brute force” calculation for a single particle placed arbitrarily 
on the grid. Some 50 to 60 values of the brute-force calculation were checked by 
hand. Further checks involved a pair of particles and sampled versions of 
continuous mass distributions that admit analytic solutions. 

The particle-pusher, or integrator, was checked by integrating a few exactly 
calculable orbits. Straight-line orbits in a constant potential are one good test for 
a polar program. Harmonic oscillator orbits were also checked. Angular 
momentum conservation in axisymmetric potentials is not a good check: it follows 
automatically (Eq. (2)). The particle-pusher neither gains nor loses particles. 

It is more difficult to check proper handling of limiting or end-point situations. 
An example arises in the solution of Eq. (4) for ~(~+l), which typically involves a 
division. Smooth transitions to limiting cases of small divisors are necessary. 
During checkout, the programs were made to issue a warning whenever the small 
divisor branch was taken, and in the production form the number of occurrences 
is counted. There are several places in the particle-pusher where similar situations 
arise. Even so, it is difficult to be certain that all potential trouble-points have been 
identified. 

The most convincing checks come through overall program performance in test 
cases. Two of these are unusually sensitive to a variety of possible troubles. 

The first is that static self-consistent (equilibrium) models can be generated 
through the use of rules developed analytically. Such models have been run for 
several (64) steps and shown to be true equilibria. All equilibrium models found so 
far are axisymmetric. 

Another, more severe, test makes use of models with a certain angular symmetry. 
For example, if the initial condition is exactly three fold symmetric, a system 
should retain exact threefold symmetry. The order of the symmetry must divide the 
number of azimuthal cells used in the density and potential calculations. One such 
model was run in which an equilibrium “cold” disk was perturbed by giving small 
radial momenta to three symmetrically disposed particles. When the calculation 
was terminated after 80 integration steps (1 t rotations), it had developed very 
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FIG. 1. “Cold” disk with threefold symmetric perturbation. A sample of 1000 particles 
plotted in configuration space at various times (in units of the rotation period of the initial disk). 
These configurations retain exact threefold symmetry; the pictures are not exactly threefold 
symmetric because of the sampling method used to select particles for plotting. Upper left frame 
at t = 0; upper right, t = 0.72; middle left, t = 0.83; middle right, t = 1.00; bottom, t = 1.24. 

strong condensations (Fig. l), but the only nonzero amplitudes were in Fourier 
angular components m = 0, 3, 6, 9 ,.... Similarly, a “cold” disk, perturbed by the 
“Cartesian” potential, had only m = 0,4, 8, 12, and 16 terms after a full rotation, 
even though the system had developed very strong features. 

The standard checks of total energy and total angular momentum conservation 
are routinely applied. 

4. RESULTS AND DISCUSSION 

Several sequences of experiments have been run with the polar program. We first 
describe the phenomena observed in these experiments, then turn to the discussion 
of questions concerning the validity of conclusions inferred from numerical 
experiments. 

581/21/4-4 
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A. Disks 

An equilibrium “cold” disk was constructed, but it is unstable, confirming a 
well-known result. One extra particle, placed somewhere among the 60 000, is 
sufficient to upset the equilibrium. Growth rates are around 10 e-foldings per 
rotation period, but no one angular Fourier component grows substantially faster 
than the others. 

A second disk, consisting of two counter-rotating “cold disks” was also an 
unstable equilibrium model with growth rates nearly the same as those for the 
“cold” disk, again with no outstanding Fourier component. Hohl [23] reported 
earlier that the counter-rotating disk was “violently unstable,” although an 
equilibrium counter-rotating configuration was not demonstrated. The counter- 
rotating disk has zero mean velocity, but it has a large (anisotropic) velocity 
dispersion. It clearly shows that velocity dispersion is not sufficient for stability. 
However, its velocity at any point in the configuration space is a two-stream 
distribution, which might be expected to be unstable. 

FIG. 2. Kalnajs disk with Q = 0.9; a sample of 1000 particles plotted at t = 0, 0.5, 1.0, 1.5, 
and 2.0 rotation periods (top left-top right-middle left-middle right-bottom). 
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The example previously cited with threefold symmetrical perturbations to an 
equilibrium “cold” disk (Fig. 1) provided confirmation that m = 3,6, 9,... angular 
Fourier components also display exponential growths with comparable growth 
rates, even in the absence of excitations with different m-values. We have not 
isolated single unstable modes experimentally. This complicates the discussion 
somewhat. Normal modes are discussed later (Sect. 4.E). 

Kalnajs disks with Q = 0.9 (Fig. 2) formed a ringlike structure, which later 
broke up in a nonaxisymmetric way. Although starting conditions with Q =# 1 
were designed to be equilibrium models, equilibrium could not be confirmed 
experimentally, so stability cannot be demonstrated directly. Their behavior can,. 
however, be compared with the stability properties of the Kalnajs omega-models. 
These disks with Q = 0.9 show an initial axisymmetric development such as might 
be expected from the known instability of the Kalnajs omega models to axisym- 
metric disturbances with $2 > 0.811. But those Kalnajs models also have many 
nonaxisymmetric instabilities with comparable growth rates as well. It is interesting 
that this model selected the axisymmetric route. Several distinct models with 
Q = 0.9 have been run; all went into ring-structures which later took on non- 
axisymmetrical forms. The distinct models used different runs of pseudorandom 
numbers to generate the initial load, but were otherwise identical. One of the other 
models went to a fourfold nonaxisymmetric form, indicating that rather small 
changes can alter the form of the nonaxisymmetric development. 

The next check was to see whether the disk started to develop structure with 
m # 0 which somehow triggered the m = 0 (axisymmetric) development. This 
was tested in an experiment with only m = 0 potentials allowed. A ring-structure 
formed on the same time-scale (Fig. 3). As expected, this ring did not develop any 
nonaxisymmetric form. Kalnajs disks with 0 = 0.9 apparently developed rings 
directly from the initial state. 

The appearance of ring structures with all of these examples is interesting. In 
linear stability theory, there is no reason why axisymmetrical disturbances should 
have negative amplitude at the origin. Systems that develop condensations at the 
center should occur as often as ring systems. The explanation is that a finite 
amplitude effect is observed. Particles that can reach the center have small angular 
momenta; there are too few of them to build up a condensation at the center. This 
provides further evidence that the effects observed are beyond the range of linear 
stability theory. 

The breakup of the ring into nonaxisymmetric condensations on the time-scale 
of these simulations has important implications for the lifetime and frequency of 
occurrence of ring-systems in astronomy. This provided the motivation to under- 
take the experiments with a ring circulating around a central mass. 

Next, Kalnajs disks with 52 = 0.8 were run (Fig. 4). These did not form rings; 
rather, they developed large density variations in angular Fourier components 



420 R. H. MILLER 

FIG. 3. Kalnajs disk with B = 0.9; purely axisymmetric, but otherwise self-consistent 
potentials. Sampling and times as in Fig. 2. 

with m 2 2. The Kalnajs “omega model” analogous to this disk is stable against 
axisymmetric disturbances, but Q = 0.8 is very close to the limit at 0.811. Like the 
Q = 0.9 cases, nonaxisymmetrical forms become apparent in the Figures beyond 
t - 1.5 rotations. Once more m = 3 appeared. The predominance of m = 3 is 
apparent in the numerical summaries long before it is noticeable in the pictures. 
Because this model used the same sequence of pseudorandom numbers as that of 
Fig. 2, this may result from the particular sequence of pseudorandom numbers. 

The important feature of Fig. 4 is that two of the prominences present at t = 2.5 
have moved toward each other by t = 3, and a barlike structure is present at 
t = 3.5. This simulation was terminated after t = 3.5. This provides the essential 
clue that leads to an understanding of the preference for barlike structures. We 
shall return to this point later (Sect. 4.C). 
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FIG. 4. Kalnajs disk with Q = 0.8; a sample of 1000 particles at t = 0, OS, 1.0, 1.5, 2.0, 
2.5,3.0, and 3.5 rotations of the equivalent cold disk (top left-bottom right), showing development 
of threefold state, and its changeover to a barlike structure. 

B. Rings 

The ring model contains two parameters, q and Q. One of these (Q) describes the 
mass in the center, and the other describes the velocity dispersion in the ring. Stable 
models should be attainable with either of these parameters sufficiently large. The 
experimental problem is to determine the curve in the (Q, q) plane that separates 
stable from unstable models. With the Saturn Rings problem as a guide, it was 
expected that very large values of Q would be required for stability at small values 
of q [24,25]; values on the order of 100 to 1000. Experimentally, stability was 
found at Q = 4, while models with Q = 3 were unstable with q = 0.1 and 0.03. 
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The ring with 4 = 0 is an equilibrium configuration experimentally, and since 
models with q < 0.1 were stable at Q 3 4, it is reasonable to treat these ring 
configurations for all Q, with q < 0.1 as equilibrium models. We can discuss the 
stability of these models. 

The experimental distinction between stable and unstable models is clear-cut 
and impressive. Examples with various values of Q at q = 0.1 provide a good 
illustration. The model at Q = 1 was unstable, but that at Q = 10 was stable. 
Next, Q = 5 was found to be stable, Q = 3 unstable, and Q = 4 stable. The 
model at Q = 3 showed an exponential growth in Fourier components of the 
density that were detectable above the “noise” at t = 0.6 rotations, with growth 
rates on the order of a factor 30 per rotation-time. The “noise” results from fluctua- 
tions in Fourier amplitudes of the density due to motions following the pseudo- 
random initial conditions. By contrast, the model with Q = 4 still had the 
appearance of noise at 3.5 rotation-times. The noise amplitudes appear to have a 
very slow growth at Q = 4. A typical noise amplitude was around 60 or 70 at the 
beginning, around 150 at t = 3.5; N1lz noise is around 230. The Q = 3 calculation 
started with similar noise values, and had Fourier amplitudes around 2000 to 4000 
by the end of the run at t = 2.3 rotations. It is possible that the Q = 4 case could 
take off with rapid growth of a disturbance at some later time, if the calculation 
were run long enough. 

The experimental analog of a stability threshold is that, as the parameter that 
controls stability is varied from the unstable regime toward stability, models show 
unstable behavior over a wide range of values of the parameter. In this unstable 
range, unstable behavior normally develops very quickly. Even unstable models 
may “linger” in a relatively quiet state for a while before the explosive changes 
that accompany unstable behavior manifest themselves. But a value of the para- 
meter can then be found such that small additional changes in the parameter 
substantially lengthen the time that the models “linger.” There is, of course, no 
assurance that models with the parameter well beyond the “threshold” would not 
eventually go “unstable.” The region of rapid lengthening of the “lingering” time 
is the experimental analog of the stability threshold. Systems that display this 
general pattern in which there is little change as a parameter is varied, followed by 
a narrow region in which there is rapid change in qualitative behavior, are the 
experimental analog of systems that can be described by a stability analysis. This 
same general pattern obtained with the earlier experiments in which Toomre 
stability was studied in a disk galaxy with pseudoparticles in the form of rings [ 161. 

From the standpoint of the interpretation of the numerical experiments, the 
existence of a threshold behavior is important; the numerical value of the para- 
meter at the threshold is secondary. 

These experiments could not be extended far beyond q = 0.1. Radial excursions, 
as the individual particles oscillate about the equilibrium orbit, now leave all 
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particles in the same radial bin for the potential calculation. With larger values of 
4 some particles cross the boundary and are tabulated in different radial bins; this 
increases the effective “noise” level by a very large factor, and is equivalent to a 
much stronger excitation. The instabilities reported here result from particle 
oscillations in the angular coordinate. Maxwell [24] argued that tangential oscilla- 
tions should be the most important for determining stability. The tangential 
oscillations affect the radial form of the potential through the different radial 
dependences of potential components that arise from the different angular Fourier 
components in the density. 

All Fourier components of the density participate in the unstable developments, 
but components with m - 6 to 8 tend to have somewhat larger amplitudes when 
the exponential growth has attained values well beyond the initial “noise.” Because 
of the noise, it is not possible to identity any one component as dominant at small 
amplitude, or as having triggered the instability. In particular, there is no evidence 
that m = 18 was responsible [24]. The “softening” of the potential is insufficient to 
overcome the expected dominance of the m = 18 component; it produces at most 
a 20 % reduction in the value of the potential. 

C. Preference for Barlike Structures 

Barlike structures developed with these disk galaxy simulations just as they had 
in earlier calculations. However, barlike structures never developed directly. In 
every example, higher angular components showed early strength, but did not 
predominate very long. By the time certain angular Fourier components could be 
blearly identified above the “noise,” m = 4 or m = 3 predominated. This is 
shown in Figs. 5 and 6, where a few Fourier components of the density and of the 
potential are plotted as functions of time for two different radii. The m = 3 
density and potential terms dominate from the time those terms emerge from the 
noise around t = 1 or 1.5 up to t = 3. Thereafter m = 2 dominates. 

In the general pattern whereby these disks reach a barlike form, the dominant 
angular Fourier component first noticed is of higher order than m = 2. But the 
order of the dominant component then decreases, one by one, until m = 2 is 
reached. For example, a system dominated by m = 4 soon absorbs a corner and 
becomes triangular, dominated by m = 3. The triangular shape typically develops 
like that in Fig. 4, in which the three prominences become more distinct, then two 
move together to form a barlike (m = 2) pattern. In the process, m = 3 dominates 
quite a bit longer than did m = 4. The m = 2 state dominates much longer yet, but 
other experiments indicate that it, too, finally “washes out.” But m = 2 dominates 
for quite a long time. 

This same early dominance by higher-order angular terms is also present in 
picture sequences published by others. There are many examples, but [4, Fig. 41, 
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FIG. 5. Amplitudes of angular Fourier components of density (top plots) and potential 
(bottom plots) as a function of time, at u = 20 (r = 27.5L). The plot with filled triangles shows 
the m = 0 component; the open circles are m = 2; filled circles represent m = 3, and open 
triangles are m = 5. The m = 5 potential values were too small to represent on this plot. Both 
the density and potential were dominated by m = 3 from the time the patterns overpowered 
the noise around t = 1.5 until about t = 3; thereafter both were dominated by m = 2. The 
dominance in both the density and the potential switched from m = 3 to m = 2 at about the 
same time. These plots refer to a Kalnajs disk with Q = 0.8, the same calculation as shown in 
Fig. 4. 

[lo, Figs. 2a, 2b], [18, Figs. lb, 2a, 3b, 5a, and 6a] illustrate the point. These all 
formed barlike structures later. 

Barlike patterns do not form directly. More complicated patterns change form 
until the barlike forms remain. This is an important result for the astronomical 
applications. The early stages of astronomical objects can hardly be expected to 
have been smooth and axisymmetrical. To account for the observed predominance 
of two-armed spirals (approximate m = 2 symmetry), there must be a mechanism 
whereby other forms can reach a barlike or two-armed symmetry. We have seen 
such a process at work in these simulations. 

The rearrangements observed here are permissible for n-body systems which 
conserve energy, angular momentum, and centroid positions. Indeed, a threefold 
symmetrical system can reduce its potential energy by bringing two of its projections 
together. 

Checks of elements of the matrix, Bn(pi , rj) of Eq. (6) bring out one of the 
reasons why m = 2, or barlike, condensations live longer than other forms. The 
potentials, pm(r), are by far strongest at m = 0 (the monopole term), as would be 
expected. Then fll(r) is much smaller, ??$) much smaller still, and so on. The 
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FIG. 6. Amplitudes of angular Fourier components of density and potential as a function 
of time, at u = 22 (r = 39.1 L), near the outer boundary of the initial configuration (which was 
at r = 46.5 L), for the same calculation as Fig. 5. Plots and labeling same as Fig. 5. Patterns 
overpowered the noise at an earlier time than in Fig. 5, and the potential switched from being 
dominated by m = 3 to domination by m = 2 somewhat earlier than the density at this radius. 

different potential terms decrease exponentially with increasing m. The m = 1 
terms are not expected to be important on symmetry grounds; they refer to dis- 
placements of the center of mass. The strongest nonaxisymmetric term to be taken 
into account is m = 2, which drives barlike condensations. All higher terms are 
exponentially weaker. 

This tendency can be seen from Eq. (7) for G&, , r2) in terms of a hyper- 
geometric function. Long-range effects arise between rings of quite different radii, 
so z is small (Q or less); in these cases F(Q, m + 4; m + 1; 9) has a value near 
unity and changes little with m at fixed z. The dominant m-dependence in the 
potential is in the zrn+l12 term, which decreases exponentially with increasing m. 

These properties are illustrated in the plots of elements of a, in Figs. 7 and 8. 
The ordinates in these figures represent the potential energy of interaction between 
a ring of particles and one particle with fixed radius. 

The radius of the ring is plotted on the abscissa. There are 36 point particles in the 
ring. The curves in each figure are labelled according to the value of m which they 
represent. In Fig. 7, the particle is at u = 10, while in Fig. 8 it is at u = 20. These 
plots were made with a = 3L; all the potentials would become infinite when the 
two radii were equal if the “softening parameter,” a, were set to zero. The extremely 
rapid decrease in the potential with increasing m is apparent. 
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U 

FIG. 7. Potentials in various Fourier angular components at various radii, generated by one 
particle at u = 10. The abscissa represents P, essentially the logarithm of the radius; the ordinate 
is the value of the potential. The various curves represent different angular Fourier components; 
each is labeled by its m-value. At sensible distances from the source, the potentials in different 
harmonics decrease nearly exponentially with increasing m-value. 

12 16 20 24 
u 

FIG. 8. Potentials in various Fourier angular components at various radii, generated by one 
particle at II = 20. Axes and labehng some as in Fig. 7. These 6gures are based on entries in the 
matrix &,(r, , r3) (Eq. (6)). 
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Particles can move over the small potential hills and valleys of components with 
large m; they tend to remain trapped for longer times by the larger valleys of the 
m = 2 component. This explains why systems started with larger velocity dis- 
persions do not develop the “small condensations” observed with “cold” systems 
[23]: the mean particle kinetic energy is sufficient to overcome the potential energy 
variations with the larger m-values. 

The dominance of m = 2 is a characteristic long-range effect. The occurrence in 
nature of m = 2 symmetries is evidence that long-range effects, extending over the 
entire system, are responsible for the appearance of these objects. An alternative 
way of regarding this effect is in terms of multipoles; the low-order multipoles 
produce effects that extend to long ranges. 

Within condensations, the higher-order harmonics are more important (z is then 
near unity for the contributing terms). Then still more detail can develop. But that 
detail need not be twofold symmetric. 

The m = 1 terms cannot be dismissed entirely. A nonzero 6,(r) implies that the 
centroid of the ring at r is shifted off the origin; but different rings can shift dif- 
ferently. The physical condition that the centroid must remain at the origin is an 
integral condition that corresponds to the sum of all B,(r) contributions. 

The systems are dominated by the same angular Fourier component over most 
of the disk. There is no evidence that dominance by m = 2 starts near the center 
and works outward. It is sometimes stated that computer models display an 
“instability to barlike disturbances in the inner regions.” We have been unable to 
confirm this statement. There is no evidence that a nearly axisymmetrical configura- 
tion tends to organize itself into a pattern dominated by m = 2 in preference to 
larger m-values. A threefold symmetrical system does go over to m = 2, however. 

A physical process has been identified that leads to the observed preference for 
barlike, or m = 2, structures. This has been possible because the polar programs 
permit these systems to be studied with fewer distracting computational features 
than was possible with the Cartesian formulation. The identification of an intuitively 
appealing physical mechanism is far more convincing than arguments to eliminate 
possible objections. 

D. Cartesian Coordinates 

The possibility that the preference for barlike structures might result from 
performing the calculations in Cartesian coordinates (point 4 of Sect, 2) has been 
eliminated by the observations and discussions of the previous subsection. How- 
ever, experiments run using the method of Section 3.E help to assess other effects 
of Cartesian coordinates. These experiments were started from Kalnajs disks with 
an outer radius at u = 22 (r/L = 46.5). 

A “cold” disk run with the Cartesian perturbing potential at unit strength 
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immediately developed an exponentially growing disturbance with fourfold 
symmetry. But a Kalnajs disk with 52 = 0.8, identical to the 52 = 0.8 model 
described earlier except for the Cartesian perturbing potential at unit strength, 
showed no noticeable difference. The strongest density variations occurred at 
m = 3, just as they had with the unperturbed model. Sensitivity to the Cartesian 
perturbing potential clearly depends on the model being studied: “cold” disks feel 
the potential very strongly, models with some initial velocity distribution feel it 
much less strongly. 

Kalnajs disks with Q = 0.9 were studied in more detail. Disks, otherwise 
identical, were tested with 1, 1.5, 2, and 4 times the normal strength of Cartesian 
perturbing potentials. The model with twice normal strength showed an early 
short-lived predominance of m = 4 on a ring-like structure, but a corner was 
quickly absorbed, the model developed dominant m = 3 angular component, and 
then went into a T-shape. The Kalnajs models perturbed by 1 and 1.5 normal 
strength Cartesian potentials were very similar to the unperturbed model. 

The model with L? = 0.9 and 4 times normal strength did not develop the central 
hole of a ring structure; rather, it went through a sequence something like Fig. 4. 
It showed an early m = 4 dominance, but by 1.3 rotations, it had a triangular 
shape and an m = 3 dominance. By t = 2, m = 2 was dominant, and continued 
to dominate until the calculation was terminated around t = 3. In this model of 
four times the normal strength, the transition from m = 4 to m = 3 dominance 
took place simultaneously over a fairly wide radial range, but the outermost parts 
of the disk changed over a little bit later. The subsequent change from m = 3 to 
m = 2 behaved similarly. There was no place within the disk where m = 4 gave 
way to m = 2, and the m = 4 dominance was completely absent from all parts of 
the disk before m = 2 began to dominate anywhere. This was the usual manner of 
switching from domination by one Fourier component to another in all of the 
experiments. 

The failure to form a ring indicates that the Cartesian perturbation is strong 
enough that individual particles do not conserve angular momentum. Enough 
particles have lost angular momentum to keep the center filled. The Cartesian 
perturbation of four times normal strength with which this occurred is equivalent 
to a Cartesian calculation carried out on a 64 x 64 active grid. The failure to 
conserve angular momentum was not noticeable at 1 and 2 times normal strength; 
apparently 128 x 128 active grids are satisfactory with velocity dispersions like 
those present in disks with Sz = 0.9. And even the four times normal strength 
appears satisfactory at 0 = 0.8. 

Periodic boundary conditions. The effect of using periodic boundary conditions 
in the potential calculation can be compared to the perturbation due to the use of 
Cartesian coordinates. The periodic boundary condition corresponds to infinite 
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periodic replication of the galaxies; the effects are usually described as being due 
to neighbors. 

Like the Cartesian potential, neighbors produce only fourth, eighth, etc.,angular 
Fourier components in the potential; the fourth is by far the strongest. Amplitudes 
can be estimated by summing terms of Eq. (7) over the nearest few sets of neighbors, 
with each neighbor treated as if the entire mass were concentrated at its center. The 
argument, z, is so small that all the F’s are well approximated by 1; the z” term 
dominates. This leads to a (distance from the center)4 dependence of the potential 
in the fourth angular Fourier component. With a 128 x 128 active grid (unit 
strength of the Cartesian potential) the perturbation due to the Cartesian potential 
is stronger than that due to the neighbors for u < 18 (r/L = 23); it is much 
stronger over most of the configuration, and over the region that contains most of 
the particles. With a 64 x 64 active grid (four times normal strength; equivalent 
to a grid spacing of 2L), the Cartesian perturbation is stronger than neighbor 
perturbations for u < 20 (r/L = 33). Only those particles at the very edge of the 
configuration feel the neighbors as strongly as they feel the Cartesian grid. Over 
most of the configuration, the effect of the neighbors is much weaker than that of 
the Cartesian grid. There is a large effect, of course, near the boundary between 
neighbors. 

Periodic boundary conditions were used with the earliest simulations to speed 
up the potential calculation by the use of Fourier transforms [l]; the neighbors 
have been eliminated in more recent calculations through the use of empty regions. 
It was expected, in the early runs, that neighbors were less important than some 
of the other artifacts of the calculation. While this expectation has been questioned 
recently [18], we have here quantitative confirmation that it is indeed negligible in 
comparison to perturbations produced by a 64 x 64 active Cartesian grid. The use 
of a Cartesian grid is more harmful to the simulations than the neighbors present 
with periodic boundary conditions. The importance of the Cartesian grid and of the 
neighbors depends on the actual mass distribution. Configurations with stronger 
central concentrations are more affected by Cartesian grid effects and less affected 
by neighbors. 

Cartesian potential calculations can be designed with some number, N, , of grid 
points along an edge. This defines the length of the Fourier transformations. Two 
different designs have been used: (1) Particles may be assigned to the full grid, 
leading to periodic boundary conditions and to neighbors, and (2) particles can be 
confined to half the linear dimension of the grid with the other half-empty to 
eliminate the effects of the neighbors. Particles feel a spurious fourth angular 
Fourier component due to the Cartesian grid in both cases, but that component in 
the potential is stronger with a coarser active grid. There is an additional fourth 
angular component due to the neighbors in case (1). The comparisons reported 
here show that most particles in a configuration experience larger perturbations in 
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the fourth angular component of the potential in case (2) than in case (l), for fixed 
N, . Since computation time and memory requirements are largely determined by 
N, , a calculation which gains in detail at the expense of allowing perturbations due 
to neighbors actually has smaller spurious effects due to the grid and generally 
makes more effective use of the computer. However, some workers object to 
neighbors, largely on aesthetic grounds; the choice is largely a matter of taste. 

E. Stability and Normal Modes 

The ring-models provide an example of a stable system in the computer. The 
different behavior at different values of Q illustrates the distinction between stable 
and unstable systems. This example strengthens the earlier conclusions that we 
can recognize stability, and that numerical effects in the integration do not prevent 
the computed system from showing stable behavior. These were discussed in 
Section 2 as points 1, 2, and 8. 

The examples in which stability is clear-cut all start from an equilibrium model. 
Some unstable equilibrium models are recognizable because features of the compu- 
tation create a small island of stability in an otherwise unstable environment. This 
is usually caused by roundoff. A perturbation large enough to remove the system 
from that island shows the unstable behavior. The equilibrium “cold” disk, the 
counterrotating disk of Section 4.A, and the rings with Q < 3 are unstable equili- 
brium models; it would be difficult to argue that they are true equilibria if they did 
not show the island of stability. 

Questions of stability present no problem with the ring systems, where 
equilibrium models and a stability threshold could be demonstrated. Similarly, 
they present no problem with respect to the question about dominance of m = 2; 
structures dominated by m = 2 developed out of more complicated structures by 
an orderly physical process without need to invoke the notion of stability. 

The critical question that remains in the discussion of computer models of disk 
galaxies is whether models may exist with low velocity dispersions which are 
stable equilibria in the sense that any changes of form, velocity dispersion, etc., 
proceed slowly compared to a dynamical time-scale. From the experiments 
reported here, and from all of their predecessors, the only models found that change 
slowly have had large velocity dispersions. Models started with small velocity 
dispersions have undergone violent changes (large changes on dynamical time- 
scales), and finally settled down to relatively slowly changing states that have large 
velocity dispersions. If slowly changing models with low velocity dispersions exist, 
they have not yet been found by the computer experiments. Such states cannot 
have escaped detection at any stage of the computer experiments. We are therefore 
left to conclude that initial conditions that might lead to such models must be very 
improbable. This conclusion is strengthened by the extreme sensitivity of initial 
conditions to the least failure to meet the self-consistency conditions: the intol- 
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erance of any failure of exact self-consistency implies that any islands of stability 
must be very small indeed. 

Linear stability theory could be helpful if it pointed out some stable equilibria 
with low velocity dispersions that might be good candidates to test by numerical 
experiments. This has not been successful. Failing that, an orderly procedure to 
study the properties of disk galaxies would be through responses of the disk to 
selected disturbances. As normal modes of the theoretical disk, determined by 
linear stability theory, should be ideally suited, this goal motivates the investigation 
of normal modes. This effort has not been successful either. First, it turns out that 
the normal modes of this computer model are different from the normal modes of 
the Kalnajs disks, and that the Kalnajs normal modes cannot even be synthesized 
from linear combinations of degenerate normal modes of the computer model. 
Next, we find that this must be true of any N-body simulation. These investigations 
follow. 

Normal modes: Computer systems. Comparison of computer disk galaxy 
models with the stability properties of the theoretical models after which they were 
patterned was a useful guide in the study of the disks. The normal modes for the 
quiet disk of particles are not the normal modes of the Kalnajs omega models [20]. 
The distinction brings out one of the complications in attempts to compare the 
results of numerical experiments with theory. The normal modes of the Kalnajs 
models are continuous disturbances with a certain spatial form, a certain shape in 
velocity space, and a certain time-dependence (represented by a complex frequency). 

The independent motion of an individual particle is a normal mode of the 
particle system in the computer. To demonstrate this, consider oscillations of one 
particle about its equilibrium orbit, with all other particles undergoing undisturbed 
motions on their respective equilibrium orbits. The other particles enter and leave 
the cells into which the configuration space is divided for purposes of the potential 
calculation in a manner that maintains constant numbers of particles in each cell 
all the time. The field of computed potentials does not change until oscillations of 
the one particle carry it across the boundary of one of the cells. However, in the 
limit of vanishingly small oscillation amplitude, the particle almost never crosses 
the boundary. The potentials do not change for a single particle oscillating at 
infinitesimal amplitude; each particle then oscillates independently. This argument 
may not apply with other methods of assigning particles to grid points to obtain 
densities for use in the Poisson equation. 

The stability of the computer model is determined by the orbital stability of each 
of the individual particles in its equilibrium potential field. Every orbit must be 
stable. The number of independent normal modes is equal to the number of 
particles; the Kalnajs models have an infinite number of normal modes. 

Once an oscillation has carried a particle across a cell boundary the character of 



432 R. H. MILLER 

the problem changes, and stability conditions are different (and more difficult to 
determine). Since oscillations in the neighborhood of an equilibrium orbit involve 
departures in both radial and angular directions, any orbit with a detectably 
nonzero amplitude will eventually lead the particle to cross a cell boundary. This 
limits the amplitude of the oscillations to the roundoff level in the computer. But 
within this restricted domain, stable orbits can exist even if orbits with larger 
oscillation amplitudes are unstable. This is the island of stability referred to 
earlier. 

There are degenerate normal modes in the computer as well: linear combinations 
of these are also normal modes. If the computer disk had been perfectly designed, 
all these frequencies would be equal; in fact they are not all precisely equal. 
However, no linear combinations can be formed that approximate even the lowest 
order Kalnajs modes. The frequencies cannot be matched. Even if the frequencies 
could be matched for one or two of the Kalnajs normal modes, the spatial structure 
would be completely different. A single Kalnajs normal mode cannot be isolated 
for study in the computer experiment. 

Normal modes: Particle systems. The ideas of Monte Carlo sampling can be 
used to show that the normal modes for the Kalnajs models are not normal modes 
for any particle system which they may represent. Kalnajs [20] considered disks 
which are the particle analogs of the completely flattened MacLaurin spheroid, and 
admitted a certain amount of internal motion. A disk of radius & has surface 
density 

S(r) = &f, (10) 

where 4 = (1 - (r2/&,z))1~2, and S, is the surface density at the center. The gravita- 
tional potential in this disk is the potential of an isotropic harmonic oscillator. 
Kalnajs showed how to build a disk galaxy out of an assembly of particles moving 
on harmonic oscillator orbits. The mean circular velocity of the particles is a 
fraction, 0 < Q < 1 of the angular velocity of a particle on a circular orbit in this 
potential. These disks are equilibrium solutions of the self-consistency problem 
defined by the combined Poisson and Vlasov equations. 

Kalnajs [20] discussed the stability of these “omega models” by means of a 
normal modes analysis; stability was determined by an investigation of the fre- 
quencies of normal modes of a linearized Vlasov equation. A remarkable feature 
is that the potentials of the normal modes of all the omega models have the same 
spatial form, irrespective of the value of LR. On the plane of the disk, the potential 
of one of these modes is given by 

Ytm = p(l, m) eitmw-ot)Plm(f), (11) 
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which implies that the projection of the normal mode onto the configuration space 
produces a surface-density perturbation 

uy = eitmw-wt) Pp(f)/[. (12) 

In these equations, m is the azimuthal Fourier component, w is the frequency of 
oscillation of the normal mode, P,* is an associated Legendre function, p(l, m) is a 
numerical coefficient that comes from the solution of the Poisson equation, and 
(I - m) must be even. The details are given by Kalnajs [20]. 

Both the normal modes and any disturbances are representable in a 4-dimen- 
sional phase space; arm@, q; t) is the projection of one of these normal modes 
onto the 2-dimensional configuration space at time t. These projections onto the 
configuration space at some instant of time are sufficient for our purposes. An 
arbitrary disturbance can be projected onto the configuration space as well, to 
yield a surface density a([, v); and the projection can be analyzed into associated 
Legendre functions [26]: 

to yield a set of expansion coefficients, cLm. 
Consider a Monte Carlo simulation of a Kalnajs model with N particles; the 

instantaneous location of the ith particle is described by [i , vi . The projection onto 
the configuration space yields the instantaneous surface density 

(14) 

where the &‘ti in the denominator comes from the transformation of &functions 
into f, v coordinates. The Monte Carlo simulation can be described as a sampling 
of ti , y’i from a probability distribution, 17(r, y) = S([)/M, where M = Np is 
the total mass of the configuration. We propose to expand the surface density (14) 
into Legendre functions, and then to evaluate the expectation and covariances of 
the expansion coefficients, elm by means of an ensemble average. These are all 
standard arguments. There results: 

(15) 

cl”(i) = (2f + ‘) (’ - m)! exp(-imv.) pl”(t.) 
27r (f+m)! ' " 
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and 

E(czn’c~‘*) = N Jo2* dqi Jo1 ti dei II([$ , pi) cl”(i) c?‘(i)*. (18) 

The evaluation of the integrals is facilitated by expressing ffl([, y) in terms of 
Legendre functions, and by treating (n(f) as an even function to extend the 
integration on .$ from - 1 to + 1, as described by Hunter [26]; 

um, VI = w7wo"(~~ + 2p2°(i31. (1% 
In many Monte Carlo simulations, the basic probability density can be expressed 
in terms of only the lowest-order eigenfunction; here, the second term gives rise to 
some interesting features. The expectation values give 

E(c,O) = N/27r, (20) 
E(c,O) = N/r, (21) 

and 

(22) 
+ (21$ 1)(21’$ 1) ,(I-W?)!(I’-Bz)! 

Gw (I+m)!(l’+m)! 
&,,I j:* d.f P,“P1”Py, 

The covariances can be obtained from the expectation for the product, (22). The 
first term on the righthand side of (22) is the usual diagonal part of the covariance 
matrix. The second term is more interesting: the integral can be expressed in terms 
of 3-j symbols [27], 

( 1+2 -m 1 0 2 1 and 
( 

1 I 2 
m m -m ) 0 ’ 

The symbol with I + 1 does not enter because of the (I - m)-even rule, but there is 
another at I- 2. It suffices to note the nonzero terms; explicit evaluations of these 
integrals are not required. 

The covariance matrix splits into block-diagonal form, with a separete (intinite) 
block for each value of m. Each block, labeled by successive even or odd values of I, 
has symmetrical tridiagonal structure, with the I’ = I - 2, 1, and I+ 2 elements 
nonzero for 1, I’ > 0. 

The diagonal elements of the covariance matrix represent the “noise” mentioned 
repeatedly. 

The important point is that the covariance matrix is not diagonal. Thus the 
Legendre functions cannot be normal modes for the ensemble of N-particle 
systems used to sample the Kalnajs disk. Furthermore, all elements are of order 
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N; the covariance matrix does not become diagonally dominant as N - co. Even 
in that limit, the Legendre functions cannot be normal modes of a particle system. 
This conclusion applies to the linear combinations of omega-models described by 
Kalnajs [20] as well. 

A diagonal covariance matrix may not suffice to assure a set of normal modes. 
It does not seem worthwhile to undertake the diagonalization of the covariance 
matrix. 

The normal modes of the Kalnajs disks cannot be normal modes for an ensemble 
of particle systems, even though the same distribution-function was used to describe 
both ensembles. Particle positions were selected to avoid positional correlations for 
the Monte Carlo simulation, but that is consistent with the Vlasov equation. This. 
is a disturbing result because the Kalnajs disk is intended to represent just such 
particle systems. 

The omission of time-dependence is not important. As the particle system 
evolves, it passes through a sequence of spatial configurations, and the argument 
applies to each of them. 

The decomposition of the density and potential into angular Fourier components 
that has been used throughout this paper remains valid, since the covariance 
matrix is diagonal in m. The troubles lie in the set of radial functions. 

The nondiagonal covariance matrix implies that amplitudes of the “normal 
modes” cannot be varied independently. This means that a single normal mode 
cannot be isolated for study in any N-body calculation. There are other difficulties 
in attempting to isolate independent normal modes of the Kalnajs omega models. 
in an initial value calculation, but there is no need to discuss them. The potentially 
powerful tool of studying the response of the disk to selected disturbances is not 
available because there is no means to excite the disk with any disturbance that 
should produce a response readily amenable to analysis. The best that can be done 
is to conduct experiments in which a whole class of disturbances is stable or 
unstable, as was done with the studies of the Kalnajs disks with Q chosen such that 
the configuration should be stable or unstable to all axisymmetric disturbances. 
Individual axisymmetrical modes cannot be studied. 

A similar result obtains with deterministic, rather than randomly selected, 
particle positions. An infinite number of particles is required to construct a con- 
figuration in which only one Kalnajs normal mode is excited. 

5. CONCLUSIONS 

The principal motivation for undertaking the polar calculation was to demon- 
strate that the preference for m = 2 features in disk galaxy simulations did not 
result from the special symmetry of a Cartesian grid (point 4 of Sect. 2). Several 
m-values have equal status in the polar program, so features that depend on the 
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symmetry of the grid could take a variety of forms. This test could be carried to an 
extreme by choosing a prime number of angular grid points, N, , but that has not 
been necessary. 

The resulting program provided sufficiently the fine control over the numerical 
experiments that we were able to identify physical processes that cause self- 
gravitating systems to prefer m = 2 symmetries (Sect. 4.C). The fine control also 
permitted useful study of other questions. In particular, several equilibrium models 
were constructed. One of these (the ring model) showed a stability threshold, 
which provided additional experimental evidence that stability can be studied in 
these numerical experiments. This strengthens the arguments concerning points 1, 
2, and 8 of Section 2. 

The problem of large velocity dispersions in “equilibrium” models remains. The 
disagreement with observation cannot be a feature of the numerical experiments 
(Sect. 2), but must result from an incomplete physical model. There must be more 
to a galaxy than a set of mass-points that interact through forces of self-gravitation. 

Natural processes, starting from a variety of uncontrolled initial conditions, 
could not systematically seek out very special states so critical that they cannot be 
found in numerical experiments. All the arguments of Section 2 confirmed by the 
additional evidence reported here, indicate that any large regions of “stability” 
such as we seek should have been apparent in the computer experiments if they 
actually existed. Quite a variety of initial conditions has been tried, including some 
(those with “gentle cooling” [4]) that were close to an equilibrium-and even these 
would not remain with low velocity dispersions. The failure to find such a model 
in the computer is not simply an inability to construct an equilibrium model 
(point 7 of Sect. 2). 

A long-lived condition with low velocity dispersion would have to be attained 
from a wide variety of initial conditions to represent the kind of solution we seek. 
It should arise as easily as the m = 2 features. No such state is found, forcing the 
conclusion that the physical model is deficient. We shall not speculate on possible 
modifications to the physical model. 

This raises one more serious question: given that the physical model is deficient 
in that it does not yield “equilibria” with low velocity dispersions, why should our 
conclusions concerning m = 2 features be valid? The m = 2 features now stand on 
a physical process, which can operate with a variety of physical models. The 
physical process was discovered with the help of the numerical experiments. This 
underlines the importance of identifying a physical process. 
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